Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Pharmaceutics ; 16(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38399350

RESUMO

The journal retracts the article, "Thymoquinone-Loaded Soy-Phospholipid-Based Phytosomes Exhibit Anticancer Potential against Human Lung Cancer Cells" [...].

2.
Antib Ther ; 7(1): 53-66, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38371953

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and the Middle East respiratory syndrome coronavirus (MERS-CoV) are highly pathogenic human coronaviruses (CoVs). Anti-CoVs mAbs and vaccines may be effective, but the emergence of neutralization escape variants is inevitable. Angiotensin-converting enzyme 2 and dipeptidyl peptidase 4 enzyme are the getaway receptors for SARS-CoV-2 and MERS-CoV, respectively. Thus, we reformatted these receptors as Fc-fusion decoy receptors. Then, we tested them in parallel with anti-SARS-CoV (ab1-IgG) and anti-MERS-CoV (M336-IgG) mAbs against several variants using pseudovirus neutralization assay. The generated Fc-based decoy receptors exhibited a strong inhibitory effect against all pseudotyped CoVs. Results showed that although mAbs can be effective antiviral drugs, they might rapidly lose their efficacy against highly mutated viruses. We suggest that receptor traps can be engineered as Fc-fusion proteins for highly mutating viruses with known entry receptors, for a faster and effective therapeutic response even against virus harboring antibodies escape mutations.

3.
Saudi J Biol Sci ; 31(1): 103871, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38107766

RESUMO

Epithelial cancer cells rely on the extracellular matrix (ECM) attachment in order to spread to other organs. Detachment from the ECM is necessary for these cells to seed in other locations. When the attachment to the ECM is lost, cellular metabolism undergoes a significant shift from oxidative metabolism to glycolysis. Additionally, the cancer cells become more dependent on glutaminolysis to avoid a specific type of cell death known as anoikis, which is associated with ECM detachment. In our recent study, we observed increased expression of H3K27me3 demethylases, specifically KDM6A/B, in cancer cells that were resistant to anoikis. Since KDM6A/B is known to regulate cellular metabolism, we investigated the effects of suppressing KDM6A/B with GSK-J4 on the metabolic processes in these anoikis-resistant cancer cells. Our results from untargeted metabolomics revealed a profound impact of KDM6A/B inhibition on various metabolic pathways, including glycolysis, methyl histidine, spermine, and glutamate metabolism. Inhibition of KDM6A/B led to elevated reactive oxygen species (ROS) levels and depolarization of mitochondria, while reducing the levels of glutathione, an important antioxidant, by diminishing the intermediates of the glutamate pathway. Glutamate is crucial for maintaining a pool of reduced glutathione. Furthermore, we discovered that KDM6A/B regulates the key glycolytic genes expression like hexokinase, lactate dehydrogenase, and GLUT-1, which are essential for sustaining glycolysis in anoikis-resistant cancer cells. Overall, our findings demonstrated the critical role of KDM6A/B in maintaining glycolysis, glutamate metabolism, and glutathione levels. Inhibition of KDM6A/B disrupts these metabolic processes, leading to increased ROS levels and triggering cell death in anoikis-resistant cancer cells.

4.
Front Immunol ; 14: 1291534, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149243

RESUMO

Background: Adaptive humoral immunity against SARS-CoV-2 has mainly been evaluated in peripheral blood. Human secondary lymphoid tissues (such as tonsils) contain large numbers of plasma cells that secrete immunoglobulins at mucosal sites. Yet, the role of mucosal memory immunity induced by vaccines or natural infection against SARS-CoV-2 and its variants is not fully understood. Methods: Tonsillar mononuclear cells (TMNCs) from adults (n=10) and children (n=11) were isolated and stimulated using positive SARS-CoV-2 nasal swabs. We used endpoint enzyme-linked immunosorbent assays (ELISAs) for the measurement of anti-S1, -RBD, and -N IgG antibody levels and a pseudovirus microneutralization assay to assess neutralizing antibodies (nAbs) in paired serum and supernatants from stimulated TMNCs. Results: Strong systemic humoral response in previously SARS-CoV-2 infected and vaccinated adults and children was observed in accordance with the reported history of the participants. Interestingly, we found a significant increase in anti-RBD IgG (305 and 834 folds) and anti-S1 IgG (475 and 443 folds) in the stimulated TMNCs from adults and children, respectively, compared to unstimulated cells. Consistently, the stimulated TMNCs secreted higher levels of nAbs against the ancestral Wuhan strain and the Omicron BA.1 variant compared to unstimulated cells by several folds. This increase was seen in all participants including children with no known history of infection, suggesting that these participants might have been previously exposed to SARS-CoV-2 and that not all asymptomatic cases necessarily could be detected by serum antibodies. Furthermore, nAb levels against both strains were significantly correlated in adults (r=0.8788; p = 0.0008) and children (r = 0.7521; p = 0.0076), and they strongly correlated with S1 and RBD-specific IgG antibodies. Conclusion: Our results provide evidence for persistent mucosal humoral memory in tonsils from previously infected and/or vaccinated adults and children against recent and old variants upon re-exposure. They also highlight the importance of targeting mucosal sites with vaccines to help control infection at the primary sites and prevent potential breakthrough infections.


Assuntos
COVID-19 , Vacinas , Adulto , Criança , Humanos , Imunidade Humoral , Tonsila Palatina , SARS-CoV-2 , Imunoglobulina G , Anticorpos Neutralizantes
5.
PeerJ ; 11: e15024, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065688

RESUMO

Misdiagnosing suspected COVID-19 individuals could largely contribute to the viruses transmission, therefore, making an accurate diagnosis of infected subjects vital in minimizing and containing the disease. Although RT-PCR is the standard method in detecting COVID-19, it is associated with some limitations, including possible false negative results. Therefore, serological testing has been suggested as a complement assay to RT-PCR to support the diagnosis of acute infections. In this study, 15 out of 639 unvaccinated healthcare workers (HCWs) were tested negative for COVID-19 by RT-PCR and were found seropositive for SARS-CoV-2 nucleocapsid protein-specific IgM and IgG antibodies. These participants underwent additional confirmatory RT-PCR and SARS-CoV-2 spike-specific ELISA tests. Of the 15 individuals, nine participants were found negative by second RT-PCR but seropositive for anti-spike IgM and IgG antibodies and neutralizing antibodies confirming their acute infection. At the time of collection, these nine individuals were in close contact with COVID-19-confirmed patients, with 77.7% reporting COVID-19-related symptoms. These results indicate that including serological tests in the current testing profile can provide better outcomes and help contain the spread of the virus by increasing diagnostic accuracy to prevent future outbreaks rapidly.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Imunoglobulina G/análise , Imunoglobulina M/análise , Teste para COVID-19
6.
Clin Infect Dis ; 76(3): e308-e318, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35675306

RESUMO

BACKGROUND: The Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic zoonotic betacoronavirus and a global public health concern. Better undersetting of the immune responses to MERS-CoV is needed to characterize the correlates of protection and durability of the immunity and to aid in developing preventative and therapeutic interventions. Although MERS-CoV-specific circulating antibodies could persist for several years post-recovery, their waning raises concerns about their durability and role in protection. Nonetheless, memory B and T cells could provide long-lasting protective immunity despite the serum antibodies levels. METHODS: Serological and flow cytometric analysis of MERS-CoV-specific immune responses were performed on samples collected from a cohort of recovered individuals who required intensive care unit (ICU) admission as well as hospital or home isolation several years after infection to characterize the longevity and quality of humoral and cellular immune responses. RESULTS: Our data showed that MERS-CoV infection could elicit robust long-lasting virus-specific binding and neutralizing antibodies as well as T- and B-cell responses up to 6.9 years postinfection regardless of disease severity or need for ICU admission. Apart from the persistent high antibody titers, this response was characterized by B-cell subsets with antibody-independent functions as demonstrated by their ability to produce tumor necrosis factor α (TNF-α), interleukin (IL)-6, and interferon γ (IFN-γ) cytokines in response to antigen stimulation. Furthermore, virus-specific activation of memory CD8+ and CD4+ T cell subsets from MERS-recovered patients resulted in secretion of high levels of TNF-α, IL-17, and IFN-γ. CONCLUSIONS: MERS-CoV infection could elicit robust long-lasting virus-specific humoral and cellular responses.


Assuntos
Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por Coronavirus/prevenção & controle , Imunidade Celular , Interferon gama , Fator de Necrose Tumoral alfa , Linfócitos T/imunologia , Linfócitos B/imunologia
7.
J Med Virol ; 95(1): e28412, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36527332

RESUMO

Considering the global trend to confine the COVID-19 pandemic by applying various preventive health measures, preprocedural mouth rinsing has been proposed to mitigate the transmission risk of SARS-CoV-2 in dental clinics. The study aimed to investigate the effect of different mouth rinses on salivary viral load in COVID-19 patients. This study was a single-center, randomized, double-blind, six-parallel-group, placebo-controlled clinical trial that investigated the effect of four mouth rinses (1% povidone-iodine, 1.5% hydrogen peroxide, 0.075% cetylpyridinium chloride, and 80 ppm hypochlorous acid) on salivary SARS-CoV-2 viral load relative to the distilled water and no-rinse control groups. The viral load was measured by quantitative reverse transcription PCR (RT-qPCR) at baseline and 5, 30, and 60 min post rinsing. The viral load pattern within each mouth rinse group showed a reduction overtime; however, this reduction was only statistically significant in the hydrogen peroxide group. Further, a significant reduction in the viral load was observed between povidone-iodine, hydrogen peroxide, and cetylpyridinium chloride compared to the no-rinse group at 60 min, indicating their late antiviral potential. Interestingly, a similar statistically significant reduction was also observed in the distilled water control group compared to the no-rinse group at 60 min, proposing mechanical washing of the viral particles through the rinsing procedure. Therefore, results suggest using preprocedural mouth rinses, particularly hydrogen peroxide, as a risk-mitigation step before dental procedures, along with strict adherence to other infection control measures.


Assuntos
COVID-19 , Antissépticos Bucais , Humanos , Antissépticos Bucais/uso terapêutico , SARS-CoV-2 , Peróxido de Hidrogênio , Povidona-Iodo/uso terapêutico , Cetilpiridínio/uso terapêutico , Pandemias , Carga Viral , Água
8.
Pharmaceutics ; 14(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36559120

RESUMO

Flibanserin was licensed by the United States Food and Drug Administration (FDA) as an oral non-hormonal therapy for pre-menopausal women with inhibited sexual desire disorder. However, it suffers from susceptibility to first-pass metabolism in the liver, low aqueous solubility, and degradation in the acidic stomach environment. Such hurdles result in a limited oral bioavailability of 33%. Thus, the aim of the study was to utilize the principles of nanotechnology and the benefits of an intranasal route of administration to develop a formulation that could bypass these drawbacks. A response-surface randomized D-optimal strategy was used for the formulation of flibanserin spanlastics (SPLs) with reduced size and increased absolute zeta potential. Two numerical factors were studied, namely the Span 60: edge activator ratio (w/w) and sonication time (min), in addition to one categorical factor that deals with the type of edge activator. Particle size (nm) and zeta potential (mV) were studied as responses. A mathematical optimization method was implemented for predicting the optimized levels of the variables. The optimized formulation was prepared using a Span: sodium deoxycholate ratio of 8:2 w/w; a sonication time of 5 min showed particle sizes of 129.70 nm and a zeta potential of -33.17 mV. Further in vivo assessment following intranasal administration in rats showed boosted plasma and brain levels, with 2.11- and 2.23-fold increases (respectively) compared to raw FLB. The aforementioned results imply that the proposed spanlastics could be regarded as efficient drug carriers for the trans-nasal delivery of drugs to the brain.

9.
Front Pharmacol ; 13: 1028356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386233

RESUMO

Given the high whittling down rates, high costs, and moderate pace of new medication, revelation, and improvement, repurposing "old" drugs to treat typical and uncommon illnesses is progressively becoming an appealing proposition. Drug repurposing is the way toward utilizing existing medications in treating diseases other than the purposes they were initially designed for. Faced with scientific and economic challenges, the prospect of discovering new medication indications is enticing to the pharmaceutical sector. Medication repurposing can be used at various stages of drug development, although it has shown to be most promising when the drug has previously been tested for safety. We describe strategies of drug repurposing for Parkinson's disease, which is a neurodegenerative condition that primarily affects dopaminergic neurons in the substantia nigra. We also discuss the obstacles faced by the repurposing community and suggest new approaches to solve these challenges so that medicine repurposing can reach its full potential.

10.
Sci Rep ; 12(1): 19446, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376469

RESUMO

As a hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, Fluvastatin (FLV) is used for reducing low-density lipoprotein (LDL) cholesterol as well as to prevent cardiovascular problems. FLV showed cell line cytotoxicity and antitumor effect. Melittin (MEL) exhibits antineoplastic activity and is known to be promising as a therapeutic option for cancer patients. The aim of this work was to investigate the combination of FLV with MEL loaded hybrid formula of phospholipid (PL) with alpha lipoic acid (ALA) nanoparticles to maximize anticancer tendencies. This study examines the optimization of the prepared formulation in order to minimize nanoparticles size and maximize zeta potential to potentiate cytotoxic potentialities in colon cancer cells (Caco2), cell viability, cell cycle analysis and annexin V were tested. In addition to biological markers as P53, Bax, bcl2 and Caspase 3 evaluation The combination involving FLV PL ALA MEL showed enhanced cytotoxic potentiality (IC50 = 9.242 ± 0.35 µg/mL), about twofold lower, compared to the raw FLV (IC50 = 21.74 ± 0.82 µg/mL). According to studies analyzing cell cycle, optimized FLV PL ALA MEL was found to inhibit Caco2 colon cancer cells more significantly than other therapeutic treatments, wherein a higher number of cells were found to accumulate over G2/M and pre-G1 phases, whereas G0/G1/S phases witnessed the accumulation of a lower number of cells. The optimized formulation may pave the way for a novel and more efficacious treatment for colon cancer.


Assuntos
Neoplasias do Colo , Inibidores de Hidroximetilglutaril-CoA Redutases , Ácido Tióctico , Humanos , Fluvastatina/farmacologia , Ácido Tióctico/farmacologia , Meliteno/farmacologia , Ácidos Graxos Monoinsaturados/farmacologia , Fosfolipídeos , Células CACO-2 , Indóis/farmacologia , Indóis/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Neoplasias do Colo/tratamento farmacológico
11.
Antibiotics (Basel) ; 11(10)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36290032

RESUMO

Pseudomonas aeruginosa is an opportunistic gram-negative human pathogen that causes a wide range of infections, including nosocomial infections. Aside from the intrinsic and acquired antimicrobial resistance against many classes of antibiotics, P. aeruginosa can produce an extracellular polymeric matrix called "biofilm" that protects bacteria from antibiotics and harmful factors. Biofilm enables P. aeruginosa to develop chronic infections. This study assessed the inhibitory action of ZnO-nanoparticles against biofilms formed by multidrug-resistant P. aeruginosa strains. A collection of 24 clinical strains of P. aeruginosa were tested for their antimicrobial resistance against different antibiotics using the disk diffusion method. The antibiofilm activity of ZnO-NPs was assessed using the microtiter plate biofilm assay. The application of ZnO-NPs dramatically modulated the resistance profile and biofilm activity of P. aeruginosa. The combination of ZnO-NPs and meropenem showed synergistic antipseudomonal activity with lower MICs. The scanning electron microscope (SEM) micrographs revealed complete inhibition of biofilms treated with the meropenem-ZnO-NPs combination. Reduced expression of biofilm regulating genes lasR, pslA, and fliC was detected, reflecting the enhanced antibiofilm effect of ZnO-NPs. In vivo application of this antimicrobial mixture completely cured P. aeruginosa-induced keratitis in rats. Our findings represent a dual enhancement of antibacterial and antibiofilm activity via the use of meropenem-ZnO-NPs combination against carbapenem-resistant P. aeruginosa infections.

12.
Polymers (Basel) ; 14(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080654

RESUMO

Colon cancer (CC) is one of major causes of mortality and affects the socio-economic status world-wide. Therefore, developing a novel and efficient delivery system is needed for CC management. Thus, in the present study, lipid polymer hybrid nanoparticles of apigenin (LPHyNPs) was prepared and characterized on various parameters such as particle size (234.80 ± 12.28 nm), PDI (0.11 ± 0.04), zeta potential (−5.15 ± 0.70 mV), EE (55.18 ± 3.61%), etc. Additionally, the DSC, XRD, and FT-IR analysis determined drug entrapment and affinity with the selected excipient, demonstrating a promising drug affinity with the lipid polymer. Morphological analysis via SEM and TEM exhibited spherical NPs with a dark color core, which indicated drug entrapment inside the core. In vitro release study showed significant (p < 0.05) sustained release of AGN from LPHyNPs than AGN suspension. Further, the therapeutic efficacy in terms of apoptosis and cell cycle arrest of developed LPHyNPs against CC was estimated by performing flow cytometry and comparing its effectiveness with blank LPHyNPs and AGN suspension, which exhibited remarkable outcomes in favor of LPHyNPs. Moreover, the mechanism behind the anticancer attribute was further explored by estimating gene expression of various signaling molecules such as Bcl-2, BAX, NF-κB, and mTOR that were involved in carcinogenic pathways, which indicated significant (p < 0.05) results for LPHyNPs. Moreover, to strengthen the anticancer potential of LPHyNPs against chemoresistance, the expression of JNK and MDR-1 genes was estimated. Outcomes showed that their expression level reduced appreciably when compared to blank LPHyNPs and AGN suspension. Hence, it can be concluded that developed LPHyNPs could be an efficient therapeutic system for managing CC.

13.
Antioxidants (Basel) ; 11(8)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36009218

RESUMO

The immunosuppressant cyclosporine A (CSA) has been linked to serious renal toxic effects. Although 2-methoxyestradiol (2ME) possesses a wide range of pharmacological abilities, it suffers poor bioavailability after oral administration. The purpose of this study was to evaluate the potential of 2ME loaded D-ɑ-tocopheryl polyethylene glycol succinate (TPGS) micelles to prevent CSA-induced nephrotoxicity in rats. A 2ME-TPGS was prepared and showed particle size of 44.3 ± 3.5 nm with good entrapment efficiency and spherical structures. Male Wistar rats were divided into 5 groups, namely: Control, Vehicle, CSA, CSA + 2ME-Raw, and CSA + 2ME-Nano. CSA was injected daily at a SC dose of 20 mg/kg. Both 2ME-Raw and 2ME-Nano were given daily at oral doses of 5 mg/kg. Treatments continued for three successive weeks. 2ME-TPGS exerted significant protective effects against CSA nephrotoxicity. This was evidenced in ameliorating deterioration of renal functions, attenuation of pathological changes in kidney tissues, exerting significant anti-fibrotic, antioxidant, and anti-inflammatory effects together with significant anti-apoptotic effects. Western blot analyses showed both 2ME-Raw and 2ME-Nano significantly inhibited protein expression of TGF-ß1 and phospho-ERK (p-ERK). It was observed that 2ME-TPGS, in almost all experiments, exerted superior protective effects as compared with 2ME-Raw. In conclusion, 2ME loaded in a TPGS nanocarrier possesses significant protective activities against CSA-induced kidney injury in rats. This is attributable to 2ME anti-fibrotic, antioxidant, anti-inflammatory, and anti-apoptotic activities which are mediated at least partly by inhibition of TGF-ß1/p-ERK axis.

14.
Glob Chall ; 6(7): 2200008, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35860397

RESUMO

Rapid lateral flow immune-assays are point-of-care diagnostic tools that are easy to use, cheap, and do not need centralized infrastructure. Therefore, these devices are appealing for rapid detection of the humoral immune responses to infections, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The novel technique introduced here uses a complex of anti-SARS-CoV-2 N-protein antibodies conjugated to gold nanoparticles that are bound to five SARS-CoV-2 N protein conjugated to gold nanoparticles to amplify the signals obtained from the conjugated SARS-CoV-2 N protein and to enhance the assay detection limit. To validate the performance of the adopted lateral flow, serum from SARS-CoV-2 seropositive individuals and prepandamic negative samples are tested and compared to a validated enzyme-linked immunosorbent assay (ELISA) for the detection of SARS-CoV-2 N protein specific IgG and IgM antibodies. The data shows that the designed lateral flow assay has an excellent sensitivity and specificity upon detecting IgM and IgG antibodies by applying only 2 µL from the serum sample to the adopted strips. Taken together, the developed lateral flow immunoassay assay provides a rapid, specific, and highly sensitive means to detect the immune responses against SARS-CoV-2 with only 2 µL from the serum sample.

15.
Drug Deliv ; 29(1): 1536-1548, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35612292

RESUMO

Certain anticancer agents selectively target the nucleus of cancer cells. One such drug is 2-methoxyestradiol (2ME), which is used for treating lung cancer. To improve the therapeutic effectiveness of these agents, many new methods have been devised. 2ME was entrapped into the core of hydrophobic invasomes (INVA) covered with Phospholipon 90G and apamin (APA). The Box-Behnken statistical design was implemented to enhance the composition. Using Design-Expert software (Stat-Ease Inc., Minneapolis, MN), the INVA component quantities were optimized to obtain spherical particles with the smallest size, that is, a diameter of 167.8 nm. 2ME-INVA-APA significantly inhibited A549 cells and exhibited IC50 of 1.15 ± 0.04 µg/mL, which is lower than raw 2ME (IC50 5.6 ± 0.2 µg/mL). Post 2ME-INVA-APA administration, a significant rise in cell death and necrosis was seen among the A549 cells compared to those treated with plain formula or 2ME alone. This effect was indicated by increased Bax expression and reduced Bcl-2 expression, as well as mitochondrial membrane potential loss. Moreover, the cell cycle analysis showed that 2ME-INVA-APA arrests the G2-M phase of the A549 cells. Additionally, it was observed that the micellar formulation of the drug increased the cell count in pre-G1, thereby exhibiting phenomenal apoptotic potential. Furthermore, it up-regulates caspase-9 and p53 and downregulates TNF-α and NF-κß. Collectively, these findings showed that our optimized 2ME-INVA-APA could easily seep through the cell membrane and induce apoptosis in relatively low doses.


Assuntos
Apoptose , Neoplasias Pulmonares , 2-Metoxiestradiol/farmacologia , Células A549 , Apamina/farmacologia , Estradiol/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico
16.
Drug Deliv ; 29(1): 1492-1511, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35543534

RESUMO

Radiotherapy is one of the extensively used therapeutic modalities in glioblastoma and other types of cancers. Radiotherapy is either used as a first-line approach or combined with pharmacotherapy or surgery to manage and treat cancer. Although the use of radiotherapy significantly increased the survival time of patients, but its use has been reported with marked neuroinflammation and cognitive dysfunction that eventually reduced the quality of life of patients. Based on the preclinical and clinical investigations, the profound role of increased oxidative stress, nuclear translocation of NF-kB, production of proinflammatory cytokines such as TNF-α, IL-6, IL-ß, increased level of MMPs, increased apoptosis, reduced angiogenesis, neurogenesis, and histological aberrations in CA1, CA2, CA3 and DG region of the hippocampus have been reported. Various pharmacotherapeutic drugs are being used as an adjuvant to counteract this neurotoxic manifestation. Still, most of these drugs suffer from systemic adverse effect, causes interference to ongoing chemotherapy, and exhibit pharmacokinetic limitations in crossing the blood-brain barrier. Therefore, various phytoconstituents, their nano carrier-based drug delivery systems and miRNAs have been explored to overcome the aforementioned limitations. The present review is focused on the mechanism and evidence of radiotherapy-induced neuroinflammation and cognitive dysfunction, pathological and molecular changes in the brain homeostasis, available adjuvants, their limitations. Additionally, the potential role and mechanism of neuroprotection of various nanocarrier based natural products and miRNAs have been discussed.


Assuntos
MicroRNAs , Síndromes Neurotóxicas , Sistemas de Liberação de Medicamentos , Hipocampo , Humanos , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Compostos Fitoquímicos/farmacologia , Qualidade de Vida
17.
MAbs ; 14(1): 2057832, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35380919

RESUMO

Anti-SARS-CoV-2 monoclonal antibodies and vaccines have shown improvement in lowering viral burden and hospitalization. However, emerging SARS-CoV-2 variants contain neutralizing antibody-escape mutations. Therefore, several reports have suggested the administration of recombinant angiotensin-converting enzyme 2 (rACE2) as a soluble receptor trap to block SARS-CoV-2 infection and limit viral escape potential. Several strategies have been implemented to enhance the efficacy of rACE2 as a therapeutic agent. Fc fusions have been used to improve pharmacokinetics and boost the affinity and avidity of ACE2 decoys for the virus spike protein. Furthermore, the intrinsic catalytic activity of ACE2 can be eliminated by introducing point mutations on the catalytic site of ACE2 to obtain an exclusive antiviral activity. This review summarizes different evolution platforms that have been used to enhance ACE2-Fc (i.e., immunoadhesins) as potential therapeutics for the current pandemic or future outbreaks of SARS-associated betacoronaviruses.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Humanos , Ligação Proteica , Receptores Fc/metabolismo , Glicoproteína da Espícula de Coronavírus/genética
18.
Pharmaceutics ; 14(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35213960

RESUMO

Lung cancer is the second-most deadly malignancy worldwide, of which smoking is considered a major risk factor and causes 75-80% of lung cancer-related deaths. Costunolide (CTD) extracted from plant species Saussurea, Aucklandia, and Inula exhibits potent anticancer properties, specifically in lung cancer and leukemia. Several nanoemulsions were prepared and optimized using a three-factor Box-Behnken experimental design. The optimized green nanoemulsion (GNE) showed a vesicle size of 199.56 nm. The IC50 values revealed that A549 cells were significantly more sensitive to the optimized CTD formula than the plain formula and raw CTD. A cell cycle analysis revealed that the optimized CTD formula treatment resulted in significant cell cycle arrest at the S phase. The results also indicated that treatment with the CTD formula significantly increased caspase-3, Bax, Bcl-2, and p53 mRNA expression compared to the plain formula and CTD raw. In terms of the inflammatory markers, the optimized formula significantly reduced the activity of TNF-α and NF-κB in comparison with the plain formula and raw drug only. Overall, the findings from the study proved that a CTD GNE formulation could be a promising therapeutic approach for the treatment of lung cancer.

19.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34959710

RESUMO

Pancreatic cancer currently represents a severe issue for the entire world. Therefore, much effort has been made to develop an effective treatment against it. Emerging evidence has shown that icariin, a flavonoid glycoside, is an effective anti-pancreatic cancer drug. Melittin, as a natural active biomolecule, has also shown to possess anticancer activities. In the present study, with the aim to increase its effectiveness against cancerous cells, icariin-loaded bilosome-melittin (ICA-BM) was developed. For the selection of an optimized ICA-BM, an experimental design was implemented, which provided an optimized formulation with a particle size equal to 158.4 nm. After estimation of the release pattern, the anti-pancreatic cancer efficacy of this new formulation was evaluated. The MTT assay was employed for the determination of half maximal inhibitory concentration (IC50), providing smaller IC50 for ICA-BM (2.79 ± 0.2 µM) compared to blank-BM and ICA-Raw (free drug) against PNAC1, a human pancreatic cancer cell line isolated from a pancreatic carcinoma of ductal cell origin. Additionally, cell cycle analysis for ICA-BM demonstrated cell arrest at the S-phase and pre-G1 phase, which indicated a pro-apoptotic behavior of the new developed formulation. The pro-apoptotic and anti-proliferative activity of the optimized ICA-BM against PNAC1 cells was also demonstrated through annexin V staining as well as estimation of caspase-3 and p53 protein levels. It can be concluded that the optimized ICA-BM formulation significantly improved the efficacy of icariin against cancerous pancreatic cells.

20.
Biology (Basel) ; 10(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34827090

RESUMO

Epilepsy is one of the most common neurological disorders, characterized by recurrent seizures, resulting from abnormally synchronized episodic neuronal discharges. Around 70 million people worldwide are suffering from epilepsy. The available antiepileptic medications are capable of controlling seizures in around 60-70% of patients, while the rest remain refractory. Poor seizure control is often associated with neuro-psychiatric comorbidities, mainly including memory impairment, depression, psychosis, neurodegeneration, motor impairment, neuroendocrine dysfunction, etc., resulting in poor prognosis. Effective treatment relies on early and correct detection of epileptic foci. Although there are currently a few well-established diagnostic techniques for epilepsy, they lack accuracy and cannot be applied to patients who are unsupportive or harbor metallic implants. Since a single test result from one of these techniques does not provide complete information about the epileptic foci, it is necessary to develop novel diagnostic tools. Herein, we provide a comprehensive overview of the current diagnostic tools of epilepsy, including electroencephalography (EEG) as well as structural and functional neuroimaging. We further discuss recent trends and advances in the diagnosis of epilepsy that will enable more effective diagnosis and clinical management of patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...